Dziś coś więcej o ICP OES - inductively coupled plasma optical emission spectroscopy.
Krótko: produkujemy plazmę o temperaturze około 10 000 K (10 273,15 st.C), wrzucamy tam rozpuszczoną próbkę a atomy zaczynają świecić w charakterystycznyn dla danego pierwiastka kolorze. Ten sam efekt możemy zobaczyć paląc różnego rodzaju materiały.
Długo: roztwarzamy próbkę tak, abyśmy mieli tylko ciecz. Ta ciecz (roztwór) jest następnie pompowany do nebulizatora (rozpylacza), gdzie przy pomocy gazu neutralnego (zazwyczaj argon) tworzy się mgiełka, która wpada do komory. Nad komorą znajduje się lanca nad czubkiem której tworzy się "płomień" plazmy stabilizowany polem magnetycznym wytwarzanym przez cewkę owijającą się dookoła.
Z komory natryskowej mgiełka jest zasysana do lancy i trafia w plazmę. Tam poszczególne atomy wchodzą w stan ekscytacji co powoduje ich świecenie w określonym kolorze - i faktycznie, patrząc na płomień widać zmiany jego koloru zależne od tego jaki roztwór puszczamy.
Oczywiście rejestracją długości emitowanych fal zajmuje się odpowiedni sprzęt optyczny, a nie robimy tego "na oko"
I teraz - każdy pierwiastek ma określone długości fal, które emituje w tych warunkach. Zazwyczaj jest kilka różnych długości fal, które różnią się intensywnością oraz sąsiedztwem fal innych pierwiastków. Intensywność "świecenia" zależy również od stężenia - im wyższe stężenie tym mocniejszy "pik" we wszystkich długościach fal dla danego pierwiastka.
Przykład:
Interesuje nas glin. Spodziewamy się stężenia około 0,5%, więc raczej niska intensywność. Mamy do wyboru 167nm, 309nm oraz 394nm. 167nm i 309nm dają wysoką intensywność, 394nm niską intensywność (proporcjonalnie do stężenia), więc wydaje się, że 167nm albo 309nm to najlepszy wybór.
Wiemy jednak, że w próbce jest 90% żelaza - dużo i jedna z długości fal żelaza leży po sąsiedzku z 167nm glinu. Najprawdopodobniej więc pik żelaza zasłoni pik aluminium. Mamy też 309nm, ale tutaj z kolei po sąsiedzku leży linia sodu, a że przygotowujemy próbkę przez stapianie z nadtlenkiem sodu, więc i sodu w roztworze będzie aż nadto. I znów pik sodu zasłoni pik aluminium.
Zostaje nam linia 394nm, gdzie glin jako sąsiadów ma uran i tor. Nie powinno więc być żadnych interferencji
Mamy teraz wybraną długość fali więc możemy zmierzyć pole powierzchni pod pikiem. Potem porównujemy pole powierzchni pod pikiem wytworzonym przez próbkę z polami powierzchni pod pikami ze standardów - w tym wypadku użyłbym 0%, 0,5% i 1% glinu w roztworze. Z odpowiednich proporcji wyliczamy stężenie glinu w próbce.
ICP było moją ulubioną techniką analityczną. Aż nie "wsiąkłem" w XRF
Obie techniki zresztą świadczą o tym, że ludzka inwencja, zaradność i ciekawość świata nie ma granic. Nigdy nie przestanie mnie to zadziwiać. I cieszy mnie to
P.S. zaznaczam, że na potrzeby Hejto wiele kwestii upraszczam i skracam. Na korepetycjach wytłumaczę dokładniej
#analitykachemika
Na zdjęciu nebulizator z komorą (na dole) a w skrzynce zamknięta jest lanca z cewką.
![3cfba47b-d7ca-4f9b-805f-bf5bbbe89e8f](https://cdn.hejto.pl/uploads/posts/images/1200x900/2d2ccd2fd538335e92e11e659b3aaac6.jpg)