No i stało się, LHC działa i po raz pierwszy wykryto wysokoenergetyczne neutrina w zderzaczu cząstek.
FASER (ForwArd Search ExpeRiment) to nowy detektor dzięki któremu możliwa jest detekcja neutrin. Naukowcy liczą też na odkrycie innych nieznanch dotąd cząstek a może nawet potwierdzenie lub wykluczenie istnienia ciemnej materii.
Co wykrył FASER?
Neutrino mionowe - Neutrino o niezerowej liczbie mionowej
Kandydata na Neutrino elektronowe - Neutrino o
niezerowej liczbie elektronowej
Czego nie wykrył? Eksperyment szuka ciemnych fotonów, dzieki badaniu jedynie wykluczono rejony hdzie ciemnych fotonów nie ma.
(mój komentarz: no niemożliwe ¯\_(ツ)_/¯)
#lhc #cern #fizykakwantowa #nauka
https://home.cern/news/news/experiments/new-lhc-experiments-enter-uncharted-territory
New LHC experiments enter uncharted territory

New LHC experiments enter uncharted territory

Although neutrinos are produced abundantly in collisions at the Large Hadron Collider (LHC), until now no neutrinos produced in such a way had been detected. Within just nine months of the start of LHC Run 3 and the beginning of its measurement campaign, the FASER collaboration changed this picture by announcing its first observation of collider neutrinos at this year’s electroweak session of the Rencontres de Moriond. In particular, FASER observed muon neutrinos and candidate events of electron neutrinos. “Our statistical significance is roughly 16 sigma, far exceeding 5 sigma, the threshold for a discovery in particle physics,” explains FASER’s co-spokesperson Jamie Boyd. In addition to its observation of neutrinos at a particle collider, FASER presented results on searches for dark photons. With a null result, the collaboration was able to set limits on previously unexplored parameter space and began to exclude regions motivated by dark matter. FASER aims to collect up to ten times more data over the coming years, allowing more searches and neutrino measurements. FASER is one of two new experiments situated at either side of the ATLAS cavern to detect neutrinos produced in proton collisions in ATLAS. The complementary experiment, SND@LHC, also reported its first results at Moriond, showing eight muon neutrino candidate events. “We are still working on the assessment of the systematic uncertainties to the background. As a very preliminary result, our observation can be claimed at the level of 5 sigma,” adds SND@LHC spokesperson Giovanni De Lellis. The SND@LHC detector was installed in the LHC tunnel just in time for the start of LHC Run 3. Until now, neutrino experiments have only studied neutrinos coming from space, Earth, nuclear reactors or fixed-target experiments. While astrophysical neutrinos are highly energetic, such as those that can be detected by the IceCube experiment at the South Pole, solar and reactor neutrinos generally have lower energies. Neutrinos at fixed-target experiments, such as those from the CERN North and former West Areas, are in the energy region of up to a few hundred gigaelectronvolts (GeV). FASER and SND@LHC will narrow the gap between fixed-target neutrinos and astrophysical neutrinos, covering a much higher energy range ­– between a few hundred GeV and several TeV. One of the unexplored physics topics to which they will contribute is the study of high-energy neutrinos from astrophysical sources. Indeed, the production mechanism of the neutrinos at the LHC, as well as their centre-of-mass energy, is the same as for the very-high-energy neutrinos produced in cosmic-ray collisions with the atmosphere. Those “atmospheric” neutrinos constitute a background for the observation of astrophysical neutrinos: the measurements by FASER and SND@LHC can be used to precisely estimate that background, thus paving the way for the observation of astrophysical neutrinos. Another application of these searches is measuring the production rate of all three types of neutrinos. The experiments will test the universality of their interaction mechanism by measuring the ratio of different neutrino species produced by the same type of parent particle. This will be an important test of the Standard Model in the neutrino sector.

CERN
ab049405-af9b-45de-ad9a-1ccab9d730e5
LondoMollari

(tak tak, wiem, nie mamy nawet teoretycznych możliwości ich wykrycia)

6a737b61-c735-42a3-98ea-651f8c3acd11
CzosnkowySmok

@LondoMollari teoretycznie mamy jak sprawdzić ale to niewykonalne

spawaczatomowy

@CzosnkowySmok

jedynie wykluczono rejony hdzie ciemnych fotonów nie ma


Przypadkiem naukowcy (min doktor Krzysztof Pelczar) nie pracują obecnie nad poszukiwaniem ciemnych, dziwnych cząsteczek w detektorach ciekło-argonowych w Gran Sasso?

Niedobry

@CzosnkowySmok Fiu fiu. Neutrina sa trudne do wykrycia ze az japierdole.

myoniwy

@CzosnkowySmok atom, z greckiego atomos czyli niepodzielny.

Ta, dzieli się przynajmniej na 3 różne elementy który każdy z nich też dzieli się na kolejnej mniejsze.


To jest chore. Istny fraktal. Później się okaże że i miony, gluony i bozony dzielą się na jeszcze mniejsze kawałki. I tak do usranej śmierci.

Foofy_Shmoofer

@myoniwy no nie bardzo, czy limitem nie sa liczby Plancka?

Zaloguj się aby komentować