#konstruktorelektrykamator #elektryka #elektronika
Aktualizacja danych dotyczących budowy kondensatora mikowego.
Niestety mika ma słabą przyczepność i silikon się nie trzyma. Żeby uzyskać nominalną obliczeniową pojemność musiałem go ścisnąć tak mocno jak się da.
Pierwszy pomysł miałem z metalowymi płaskownikami, podczas spawania spoiny ściągają (skurcz odlewniczy i rozszerzalność temperaturowa), byłoby to solidnie ściśnięte, ale jednocześnie byłby tym metal, a po co mi metalowa obudowa w pobliżu kilku kV i 250kHz.
Dlatego padło na rozwiązanie z materiałów nieprzewodzących, czyli plexa i trytki.
Chciałem zrobić tak żeby trytki przyjęły kształt paraboli, no i prawie się udało.
Siła ściskająca jest wystarczająco duża, trzyma ładnie pojemność. Dodatkowe dociśnięcie kilkoma kg powoduje wzrost pojemność o kilka pF.
Skoro konstrukcja mechaniczna jest w miarę ok to trzeba sprawdzić teraz konstrukcje elektryczną. Czyli czy nie będzie miał przebicia.
Ma pracować w układzie gdzie będzie kilka kVpp i częstotliwość ok 250kHz. Nie mam źródła takiego napięcia (jeszcze), na razie mogę zrobić testy napięciem stałym. Generator przeciwsobny Mazillego, trafopowielcza z telewizora i już źródło kilkunastu kV gotowe. Tylko warto by znać jakie faktyczne jest napięcie. Jak zmierzyć tak wysokie napięcia? Można mieć kilowoltomierz, ale nie mam, można użyć przekładnika napięciowego (transformator) ale to zadziała tylko dla napięć przemiennych. Zostaje inna metoda, czyli wykorzystanie prawa Ohma, I=U/R. Mamy duże U więc potrzbne jest duże R żeby I było małe.
Akurat mam polutowaną taką przystawkę do takich pomiarów. Jest to 50 rezystorów 10MΩ±5%. No i tak się składa że wszystkie są w minusie i zamiast 500MΩ wszystkie mają 475MΩ. Dlatego nie zwracać uwagi na opisy markerem.
No i teraz są dwie możliwości pomiaru. Albo wraz z woltomierzem szeregowo wpiąć ten zestaw rezystorów tworząc dzielnik 1:48,5 czyli blisko 1:50, co by dawało 20.6V/kV. Jest też druga opcja, czyli rezystor wpiąć szeregowo z amperomierzem , a dokładniej to mikroamperomierzem. Wtedy będzie przelicznik 2,12μA/kV, taki trochę ciężki do liczenia. Dlatego nie podłączałem całego rezystora tylko taki fragment który miał 400MΩ (tam gdzie biały kabelek), co dawało 2,5μA/kV. 10kV to 25μA, straty na ciepło to 25mW. Praktycznie brak wpływu pomiaru na układ.
Przetwornicę zasiliłem z regulowanego zasilacza. Przetwornica startuje od ok 7V dając 3kV na wyjściu. A przy 16V daje pod 20kV. I tyle kondensator wytrzymał. Więc elektrycznie też jest sprawny.
Skoro już jest kondensator, i to naładowany do kilkunastu kV to żal się nie pobawić dalej. Szybkie rozładowanie kondensatora na iskierniku powoduje emisję światła i głośnego dźwięku.
Skoro mam możliwość pomiaru tak wysokich napięć to szkoda tego nie wykorzystać i zobaczyć jak to wygląda na oscylogramie.
A skoro napięcie to i prąd. Tylko jak zmierzyć prąd w układzie gdzie jest 16kV? Najlepiej bezkontaktowo, czyli przekładnik prądowy, ale szybkie zbocze prądu mogłoby zostać zniekształcone przez rdzeń przekładnika. To trzeba się go pozbyć, czyli cewka Rogowskiego.
600zw drutu 0,3mm na rurce PB 6mm.
Napięcia generowane przez cewkę były na tyle duże że oscyloskop z sondą ustawioną na 10x i skali na 100V/Dz nie ogarniał całego wykresu.
Czyli znów trzeba zmienić zakres pomiarowy. Sonda ma 10MΩ, czyli trzeba dołożyć rezystor szeregowo. Najlepiej to taki 90MΩ (X10) albo np 490MΩ (X50). Ale akurat takich nie mam, a nawet pewnie bym nie miał 90szt po 1M. Szukajc w pamięci z czego można taki rezystor zrobić (kiedyś do generatora Marxa rezystory robiłem z wężyka PCV i gliceryny), pojawił się w głowie obraz szklanych wysokoomowych rezystorów. Dobrze wiedziałem gdzie mogą leżeć, i o dziwo tam były.
Okazało się że są to rezystory 4x10^10Ω. Tak wielkie wartości że już z wykładnikiem potegowym zapisane, 400MΩ. Po połączeniu szeregowo z sondą daje rozszerzenie jej zakresu 41 krotnie, czyli to co pokaże oscyloskop trzeba pomnożyć x41, lub X4,1 przy ustawieniu parametru sondy w oscyloskopie na x100.
Na wykresie widać (żółty to napięcie na kondensatorze, a niebieski to prąd wyładowania) że w czasie 160ns napięcie z cewki Rogowskiego zmieniło wartość o 400V, ale to trzeba jeszcze pomnożyć x4 czyli 1,6kV/160ns.
Co daje 10V/ns. Przekształciwszy wzór z napięcia wyjściowego na prąd wejściowy wychodzi że musiał przepływać prąd ok 2160A, ponad 2kA, ale w krótkim czasie.
Chociaż jak to piszę to rośnie we mnie mała wątpliwość czy czasem pomiar nie został zakłócony przez nagłą zmianę natężenia pola elektrycznego. Muszę zrobić kilka kolejnych pomiarów dla pewności.
myoniwy userbar
943d1c87-75fd-4dbb-a5cd-1cc44df7fa96
4aa19ae1-b1d8-4008-b63d-1a5285de4b04
872e5d62-f1d2-4911-a154-b41534bc6305
8d33bfe3-6cea-4244-8cea-9b38caf6d5d5
d5db8444-04e7-4325-ad00-6728a1c1df30
NatenczasWojski

@myoniwy

Twój opis konstrukcji i testów robi ogromne wrażenie – świetna robota! Kilka uwag i sugestii, które mogą pomóc:

1. Pomiar napięcia: Twój sposób z dzielnikiem rezystancyjnym jest jak najbardziej poprawny, zwłaszcza biorąc pod uwagę duże wartości rezystancji. Jeśli jednak zastanawiasz się nad dokładnością pomiarów, warto byłoby rozważyć użycie komercyjnych rezystorów wysokiego napięcia z niższym współczynnikiem temperaturowym – mogą zmniejszyć ryzyko błędów.

2. Cewka Rogowskiego: Zastosowanie tej metody do pomiaru prądu w impulsach o dużej szybkości zmian (di/dt) to strzał w dziesiątkę. Jeśli masz wątpliwości co do zakłóceń, możesz spróbować ekranować cewkę, np. za pomocą siatki miedzianej, z zachowaniem odpowiedniej izolacji.

3. Zakłócenia: Wysokie napięcia i prądy impulsowe mogą generować silne pola elektromagnetyczne, co może zakłócać oscyloskop i inne urządzenia pomiarowe. Dla większej pewności możesz spróbować izolować miejsce pomiarów, np. wprowadzając ekranowanie całego układu pomiarowego.

4. Rezystory w dzielniku: Twoje rozwiązanie z szklanymi rezystorami to majstersztyk improwizacji! Jeśli jednak potrzebujesz większej stabilności, warto sprawdzić specjalistyczne rezystory do zastosowań HV, np. rezystory spiralne.

5. Testy wytrzymałości: Twój kondensator przetrwał test 20kV, ale warto pamiętać, że w dłuższej pracy powtarzające się impulsy mogą prowadzić do przebicia. Jeśli masz możliwość, możesz przetestować wytrzymałość dielektryka na napięcia przemienne przy częstotliwości roboczej.

6. Rozładowanie kondensatora: Zabawa w szybkie rozładowania to świetny sposób na wizualizację mocy, ale może też generować nieprzewidziane zakłócenia. Upewnij się, że inne elementy układu nie cierpią z powodu impulsów prądowych.


Podsumowując, Twój projekt to świetne połączenie wiedzy teoretycznej i praktycznej. Dobrze, że planujesz kolejne pomiary – w tego typu układach dokładność i powtarzalność to podstawa. Czekam na dalsze aktualizacje!

myoniwy

@NatenczasWojski Wszystkich wymienionych zarzutów jestem świadom.


Stabilność temperaturowa rezystorów to mały problem, nawet jakby zmieniła się wartość o 1%/K to przy mocy w mW i 40 kilku rezystorach to one się nie nagrzeją. Ten szklany to inna sprawa, bo jest jeden, ale znów tam moc odkłada się tylko w czasie wyładowania, a nie jak w dzienniku przez cały proces. Ale to też nie problem, to nie apteka, tylko amatorskie laboratorium wysokich napięć i prądów.


Silne pola elektryczne i magnetyczne, to może być problem. Wszystkie elementy byly obok sobie, dosłownie w obrębie 0,5m.

Z tym ekranowaniem cewki to też na to wpadłem, jak już pisałem tekst.


Ps, twój post brzmi jak wygenerowany przez gpt.

onlystat

@myoniwy wrzucilem w checka i... <drum roll> - this text is very likely AI-generated ( ͡~ ͜ʖ ͡°)

NatenczasWojski

@onlystat tak to ChatGPT, ja nie jestem tak mądry. Zastanawiałem się czy z sensem odpisze


nic nie rozumiem z obu postów

myoniwy

@onlystat Nawet bez sprawdzania składnia jest jak u gpt.

NatenczasWojski

@myoniwy je problem kazać mu napisać w innej składni plus parę literówek i brak znaków przestankowych

klawo

@myoniwy Weryfikowałeś ten prąd z energią zgromadzoną w kondzie?

myoniwy

@klawo Energię zgromadzoną policzyć to nie problem, gorzej z policzeniem wytraconej energii. Bo wciąż pomiary są obarczone błędem, i to sporym, właśnie to odkryłem.

Jutro będzie wyjaśnienie.

Zaloguj się aby komentować